Electronic Engineer Discuss

View: 6958|Reply: 0
Print Prev. thread Next thread

汽车维修必备工具—示波器

[Copy link]

19

Threads

24

Posts

135

Credits

注册会员

Rank: 2

Credits
135
Jump to specified page
1#
Post time 2015-7-29 15:42:56 | Show the author posts only Reply Awards |Descending |Read mode

     作为维修人员,在诊断车辆故障时如何快速准确地捕捉到异常现象并找到原因,是解决问题的关键,而示波器则是帮助维修人员解决这一问题的重要帮手。在此结合示波器在维修诊断中的应用进行简要分析。
    1.数字示波器在汽车维修中的作用
    汽车电子设备的有些信号变化速率是非常快的,变化周期达到千分之一秒,通常测试仪器的扫描速度应该是被测信号的5~10倍。许多故障信号是间歇的,时有时无,这就需要仪器的测试速度高于故障信号的速度。数字示波器可以满足这个速度要求,它不仅可以快速捕捉电路信号,还可以用较慢的速度来显示这些波形,以便维修人员可以一面观察,一面分析。它还可以用储存的方式记录信号波形,可以倒回来观察已经发生过的快速信号,这就为分析故障提供了极大方便。无论是高速信号(例如:喷油器信号),还是低速信号(如节气门位置变化及氧传感器信号),用示波器来观察可以从波形中发现端倪。示波器就像一把尺子,它可以测量计算机系统工作状况,通过示波器可以观察到汽车电子系统是如何工作的。
    2.示波器在汽车故障案例中的应用
    当汽车的电子设备或线路出故障时,就需要维修人员着手采集所有相关的数据。示波器能显示电路中电子运动的轨迹,其方法是将电压随时间的变化以曲线的方式显示出来,所示电压的大小取决于电路中的电流和电阻。根据示波器上电压随时间变化的情况,就可以判断电路中到底出了什么问题。要使示波器发挥出最大的功效,就需将所采集到的波形进行对比。
    在此列举几例,说明示波器是如何帮助我们查找故障原因的。
    ①东风本田思域间歇性熄火的诊断
    一辆2006年款的本田思域1.8VTi轿车,故障现象是间歇性熄火。将示波器连接到发动机控制单元的几条线路上。红色线是凸轮轴位置传感器信号,绿色线是曲轴位置传感器信号,蓝线、白线、紫线以及桔黄色线分别是4个喷油器的控制信号。这组波形是示波器在发动机即将熄火时记录下来的。请注意,这时喷油器的喷油顺序已经乱了,紫色和桔黄色线显示喷油器控制信号出现同时喷油的现象。另外,桔黄色线所代表的那一个喷油器相对于其他喷油器来说,在同一段时间里已经开启2次了。有一点很重要,这就是红色线所代表的凸轮轴位置信号和绿色线所代表的曲轴位置信号此时并没有问题。既然已经有了这些信息,我们就来分析一下,以便为下一步的故障排除找出线索。
    发动机控制单元的2个主要的定时信号是凸轮轴位置和曲轴位置的输入信号,这2个信号都正常,没有故障,所以可以确定不是这2个信号导致喷油不正常故障的。一旦喷油器喷油顺序错乱以及开启次数增加,就说明发动机控制单元处于一种清零的状态。控制单元的清零是内部时钟或定时信号的错乱造成的。内部时钟或定时信号是程序用来计时并在确定的时间内发出工作指令的。当定时信号或逻辑电路的时间信号出问题时,控制发动机主要功能元件的程序就会出错,其结果就是出现行驶性故障。发动机控制单元进入清零状态通常有下列几种原因:内部时钟错误、输入定时信号错误、供电或接地电路故障以及干扰信号进入发动机控制单元。
    为了找出被清零的原因,需用示波器对喷油和点火信号同时进行监测。
    图3中,黄色、红色、绿色和蓝色的波形线是喷油器的控制信号,白色、紫色、桔黄色和棕色的波形线是独立式点火线圈(COP)控制点火的信号。在这组波形中,喷油器的信号与发动机点火信号同步,这一点是关键。从这组波形中可以看出故障的原因,请注意黄色线,在靠右边的位置有一个负的尖峰脉冲信号。
    为了正确地分析这一尖峰脉冲信号,需将示波器设置为双通道显示模式,这样就可以使波形叠加起来,从而能更容易地看出波形信号之间的相互关系。现在,可以清楚地看出白色线与黄色线上的尖峰脉冲信号是对齐的,白色方波信号的下降沿是控制线圈点火的信号。
    该车的故障原因是点火线圈的初级绕组和次级绕组之间有炭痕。当火花塞电极间的电阻大于炭痕的电阻时,电流就会走捷径,也就是说从初级绕组的炭痕流过。由于点火线圈的初级绕组与供电电路、控制电路相连,所以,次级绕组中产生的感应高压电可以从发动机控制单元的集成电路中找到回路。进入发动机控制单元的高压电会影响处理器中内部时钟的工作,其结果是打乱喷油器的喷油顺序和喷油时间,从而造成行驶性故障。
    请注意:负的尖峰脉冲信号只在一个喷油器的控制电路中出现,当点火线圈的初级绕组和次级绕组间有炭痕时,这个问题很常见。这种负的尖峰脉冲信号通常都出现在喷油器的波形信号中。点火线圈是负极放电,因为其绕线方法是使火花塞的中心电极为负极,侧电极为正极。原因是绝缘的中心电极可以保持很高的工作温度,高温容易使电子在火花塞电极间击穿间隙点火。
    在查看波形中杂波或尖峰脉冲时,通常要将所测得的波形信号叠加或者用带状图(或叫曲线图)的方式显示信号,这样就可以与其他波形信号进行实时对比,从而找出故障原因。示波器在触发模式下显示不出尖峰脉冲信号,图3中的尖峰脉冲信号是在喷油脉冲信号结束后出现的。波形信号中出现负的尖峰脉冲信号大多是点火线圈有问题时造成的。该车故障就是因为有1个点火线圈异常,换了点火线圈后故障就排除了。
【示波器的使用方法】

       示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。目前市场上使用最多的两个品牌的示波器是泰克示波器和安捷伦示波器。本章以SR-8型双踪示波器为例介绍。   
  (一)面板装置        
  SR-8型双踪示波器的面板图如图5-12所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。   
  1.显示部分 主要控制件为:   
  (1)电源开关。   
  (2)电源指示灯。   
  (3)辉度 调整光点亮度。   
  (4)聚焦 调整光点或波形清晰度。   
  (5)辅助聚焦 配合“聚焦”旋钮调节清晰度。   
  (6)标尺亮度 调节坐标片上刻度线亮度。   
  (7)寻迹 当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。   
  (8)标准信号输出 1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y轴输入灵敏度和X轴扫描速度。   
  2.Y轴插件部分   
  (1)显示方式选择开关 用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式:   
  “交替”: 当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电   
  子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。   
  “断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。   
  “YA”、“YB ”:显示方式开关置于“YA ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“YA”或“YB ”通道的信号波形。   
  “YA + YB”:显示方式开关置于“YA + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。   
  (2)“DC-⊥-AC” Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。   
  (3)“微调V/div” 灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。   
  (4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。   
  (5)“↑↓ ” Y轴位移电位器,用以调节波形的垂直位置。   
  (6)“极性、拉YA ” YA 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - YA 。   
  (7)“内触发、拉YB ” 触发源选择开关。在按的位置上(常态) 扫描触发信号分别取自YA 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。   
  (8)Y轴输入插座 采用BNC型插座,被测信号由此直接或经探头输入。   
  3.X轴插件部分
  
  (1)“t/div” 扫描速度选择开关及微调旋钮。X轴的光点移动速度由其决定,从0.2μs~1s共分21档级。当该开关“微调”电位器顺时针方向旋转到底并接上开关后,即为“校准”位置,此时“t/div”的指示值,即为扫描速度的实际值。   
  (2)“扩展、拉×10” 扫描速度扩展装置。是按拉式开关,在按的状态作正常使用,拉的位置扫描速度增加10倍。“t/div”的指示值,也应相应计取。采用“扩展 拉×10”适于观察波形细节。   
  (3)“→← ” X轴位置调节旋钮。系X轴光迹的水平位置调节电位器,是套轴结构。外圈旋钮为粗调装置,顺时针方向旋转基线右移,反时针方向旋转则基线左移。置于套轴上的小旋钮为细调装置,适用于经扩展后信号的调节。   
  (4)“外触发、X外接”插座 采用BNC型插座。在使用外触发时,作为连接外触发信号的插座。也可以作为X轴放大器外接时信号输入插座。其输入阻抗约为1MΩ。外接使用时,输入信号的峰值应小于12V。   
  (5)“触发电平”旋钮 触发电平调节电位器旋钮。用于选择输入信号波形的触发点。具体地说,就是调节开始扫描的时间,决定扫描在触发信号波形的哪一点上被触发。顺时针方向旋动时,触发点趋向信号波形的正向部分,逆时针方向旋动时,触发点趋向信号波形的负向部分。   
  (6)“稳定性” 触发稳定性微调旋钮。用以改变扫描电路的工作状态,一般应处于待触发状态。调整方法是将Y轴输入耦合方式选择(AC-地-DC)开关置于地档,将V/div开关置于最高灵敏度的档级,在电平旋钮调离自激状态的情况下,用小螺丝刀将稳定度电位器顺时针方向旋到底,则扫描电路产生自激扫描,此时屏幕上出现扫描线;然后逆时针方向慢慢旋动,使扫描线刚消失。此时扫描电路即处于待触发状态。在这种状态下,用示波器进行测量时,只要调节电平旋钮,即能在屏幕上获得稳定的波形,并能随意调节选择屏幕上波形的起始点位置。少数示波器,当稳定度电位器逆时针方向旋到底时,屏幕上出现扫描线;然后顺时针方向慢慢旋动,使屏幕上扫描线刚消失,此时扫描电路即处于待触发状态。   
  (7)“内、外” 触发源选择开关。置于“内”位置时,扫描触发信号取自Y轴通道的被测信号;置于“外”位置时,触发信号取自“外触发X 外接”输入端引入的外触发信号。   
  (8)“AC”“AC(H)”“DC” 触发耦合方式开关。 “DC”档,是直流藕合状态,适合于变化缓慢或频率甚低(如低于100Hz)的触发信号。“AC”档,是交流藕合状态,由于隔断了触发中的直流分量,因此触发性能不受直流分量影响。“AC(H)”档,是低频抑制的交流耦合状态,在观察包含低频分量的高频复合波时,触发信号通过高通滤波器进行耦合,抑制了低频噪声和低频触发信号(2MHz以下的低频分量),免除因误触发而造成的波形幌动。   
  (9)“高频、常态、自动” 触发方式开关。用以选择不同的触发方式,以适应不同的被测信号与测试目的。“高频”档,频率甚高时(如高于5MHz),且无足够的幅度使触发稳定时,选该档。此时扫描处于高频触发状态,由示波器自身产生的高频信号(200kHz信号),对被测信号进行同步。不必经常调整电平旋钮,屏幕上即能显示稳定的波形,操作方便,有利于观察高频信号波形。“常态”档,采用来自Y轴或外接触发源的输入信号进行触发扫描,是常用的触发扫描方式。“自动”挡,扫描处于自动状态(与高频触发方式相仿),但不必调整电平旋钮,也能观察到稳定的波形,操作方便,有利于观察较低频率的信号。   
  (10)“+、-” 触发极性开关。在“+”位置时选用触发信号的上升部分,在“-”位置时选用触发信号的下降部分对扫描电路进行触发。
Reply

Use magic Report

You have to log in before you can reply Login | Register

Points Rules

Dark room|Mobile|Archiver|Electronic Engineer Discuss

2024-5-20 13:53 GMT+8 , Processed in 0.152677 second(s), 20 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

Quick Reply To Top Return to the list